

Capacity Value Results for 2022 LCR at LOE and 2022 RNA 2030 Base Case

Eduardo Ibanez, Ph.D.; Mitch Bringolf

GE Energy consulting

Overview

This slide deck summarizes the capacity value calculations, evaluated for the first two sensitivities:

- NYISO 2022 LCR model at Level of Excess (LOE)
- NYISO 2022 RNA for model year 2030

- LOE and RNA Base Case results

The capacity value calculations were performed for the same list of marginal units, as presented in previous presentations:

Only includes the 50 MW and 100 MW sizes for incremental units, to reduce the number of simulations

Both ELCC and MRI techniques were applied to the results

Reference

For methodology, assumptions, and more details please refer to previous presentations:

- 3/31: https://www.nyiso.com/documents/20142/29607069/3%20GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project 0331.pdf
- 4/28: https://www.nyiso.com/documents/20142/30276257/GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project 0428.pdf
- 5/24: https://www.nyiso.com/documents/20142/30888946/2%20GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project_0524.pdf
- 6/28: https://www.nyiso.com/documents/20142/31830389/GE-Support-for-NYISO-Capacity-Accreditation-Project-0628.pdf

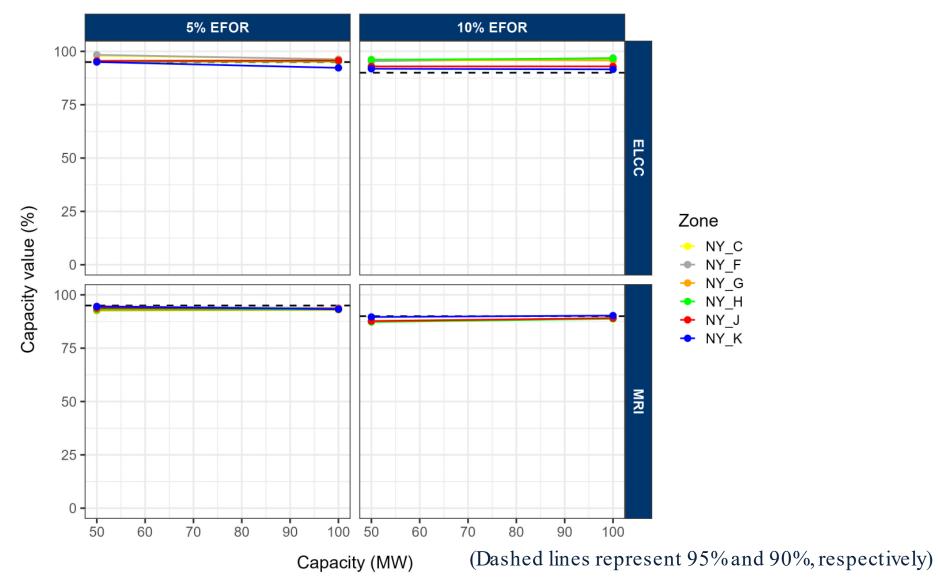
The base results (based on the 2022 LCR database) were previously presented at ICAPWG meetings:

- 04/28: 5% and 10% EFOR Thermal, Solar, Offshore Wind
- 05/24: Large Hydro, and the 2/4/6/8-hour Energy Duration Limited
- 06/28: Onshore Wind, Run of River Hydro, Landfill Biomass

2022 Level of Excess (LOE) Results

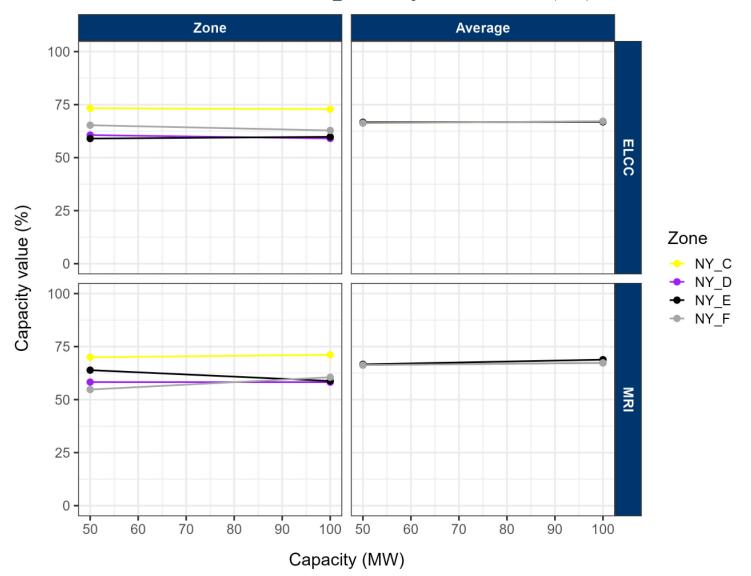
First sensitivity: Level of Excess (LOE) database

For the first proposed sensitivity, we performed the capacity value calculations using the LOE database

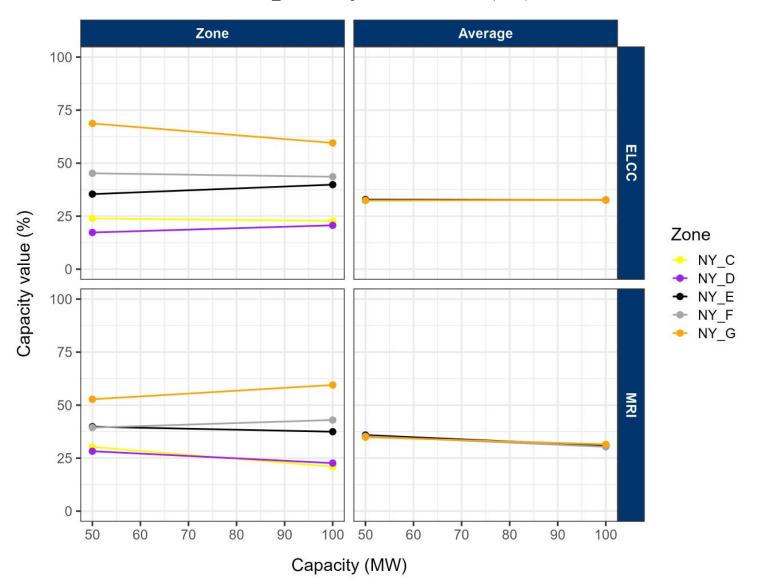

In layman's terms, the LOE database is very similar to the 2022 LCR database used to date, but has increased margins, which lead to a smaller base-case LOLE of 0.0548 days/year (instead of 0.10006)

The graphs in the next slides are organized as follows:

- Top row shows the ELCC technique results, bottom shows MRI results
- Columns show different cases modeled (e.g., different EFOR, shape, or ELR duration)
- Horizontal axis shows capacity of incremental unit (50 or 100 MW)
- Colors represent location of the unit
- Values are normalized, as percentage of nameplate capacity of the incremental unit


Thermal - ELCC and MRI capacity values (%)

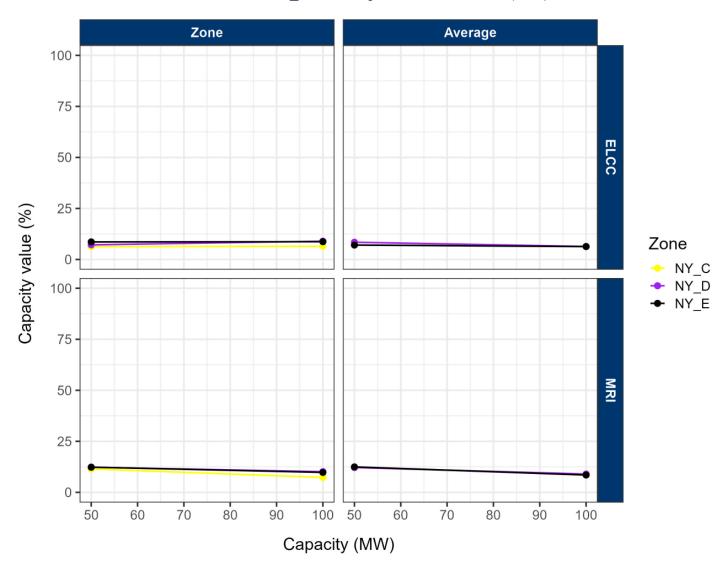
Landfill biomass - ELCC and MRI capacity values (%)


Zone = each zone uses a different shape

Average = all zones use the same shape

- LOE and RNA Base Case results

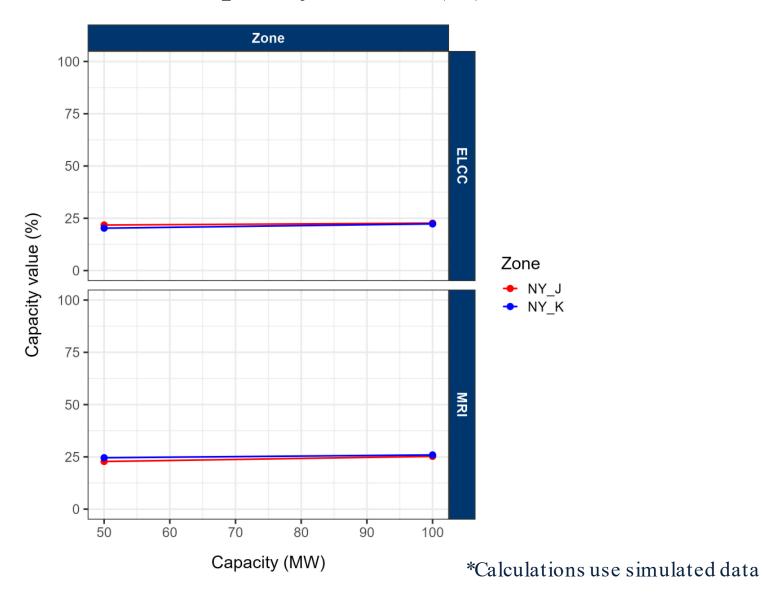
Run-of-river - ELCC and MRI capacity values (%)



Zone = each zone uses a different shape

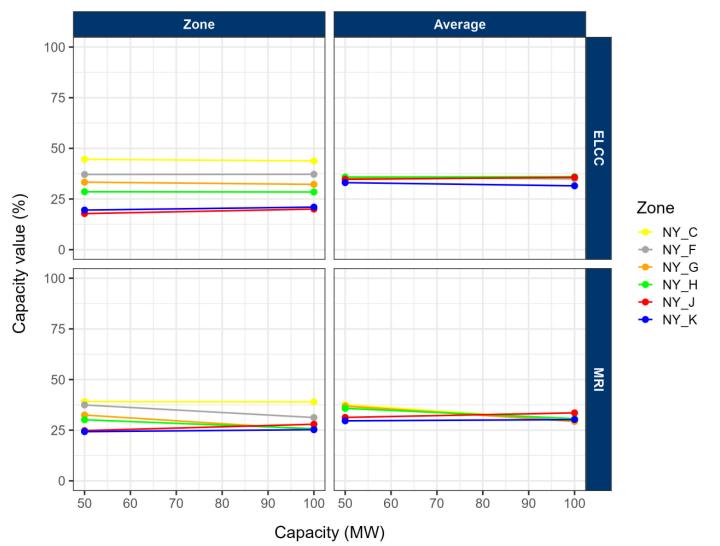
Average = all zones use the same shape

Onshore wind - ELCC and MRI capacity values (%)



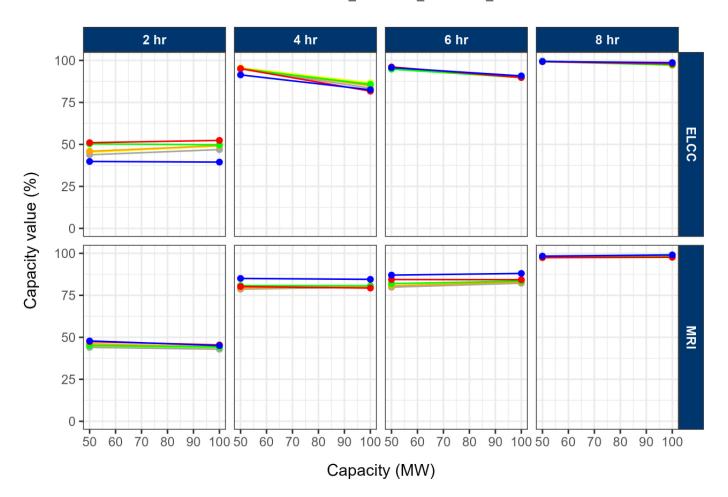
Zone = each zone uses a different shape

Average = all zones use the same shape


Offshore wind - ELCC and MRI capacity values (%)

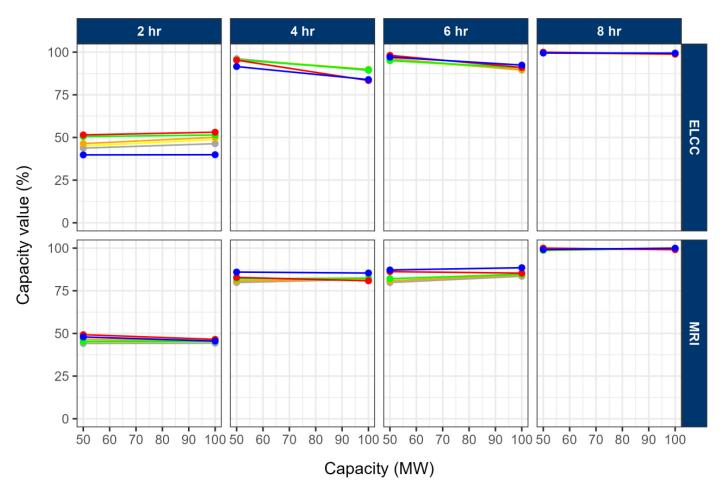
Solar – ELCC and MRI capacity values (%)

Zone = each zone uses a different shape


Average = all zones use the same shape

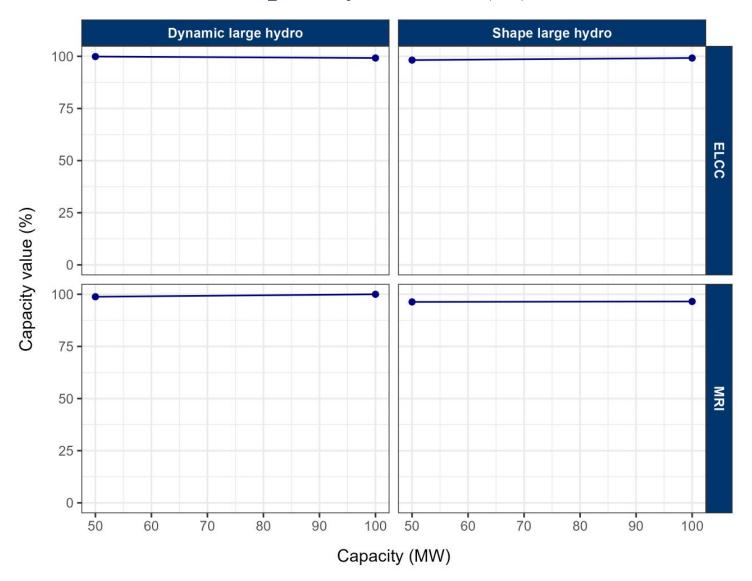
*Simulations use behind-the-meter shapes

Energy Duration Limited – Shape-based model ELCC and MRI capacity values (%)


Shape = fixed shape dispatch

Dynamic = MARS dispatch algorithm

Energy Duration Limited – Dynamic model ELCC and MRI capacity values (%)



Shape = fixed shape dispatch

Dynamic = MARS dispatch algorithm

Large Hydro - ELCC and MRI capacity values (%)

Shape = fixed shape dispatch

Dynamic = MARSdispatch algorithm

14

- LOE and RNA Base Case results

2022 LOE Capacity Value Results (MW) 50-MW incremental unit

15

		ELCC									MRI									
Class	Subtype	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K			
Thermal	5% EFOR	49.0			49.2	47.6	47.7	47.8	47.5	46.7			47.3	46.3	46.6	46.9	47.3			
Hiemai	10% EFOR	47.7			47.7	48.1	48.0	46.5	45.9	43.8			43.8	43.9	43.6	43.8	44.8			
Biomass	Zone	36.6	30.3	29.5	32.6					35.0	29.1	31.9	27.4							
Diomass	Average	33.1	33.2	33.3	33.1					33.2	33.2	33.3	33.1							
Run of river	Zone	12.0	8.6	17.7	22.6	34.4				15.1	14.1	19.9	19.7	26.4						
Rull of fiver	Average	16.2	16.3	16.4	16.2	16.2				17.9	18.0	17.9	17.6	17.4						
Onshore wind	Zone	3.2	3.6	4.3						5.7	6.1	6.2								
Offshore willia	Average	4.2	4.2	3.5						6.1	6.1	6.2								
Offshore wind	Zone							10.9	10.1							11.4	12.3			
Solar	Zone	22.3			18.6	16.7	14.3	8.9	9.8	19.6			18.7	16.2	15.1	12.4	12.1			
Colai	Average	17.8			17.9	17.7	17.9	17.4	16.5	18.8			18.4	18.5	17.9	15.7	14.8			
	2h	22.7			21.9	22.9	25.2	25.5	19.9	22.3			22.0	23.1	22.5	23.7	23.9			
Shape ELR	4h	47.8			47.5	47.7	47.5	47.5	45.7	39.4			39.3	39.7	40.4	40.1	42.5			
Onape LLIX	6h	47.9			47.6	47.5	47.4	48.0	47.9	40.0			39.9	40.3	41.0	42.2	43.5			
	8h	49.6			49.9	49.6	49.7	49.6	49.7	48.7			48.7	48.8	48.8	48.7	49.2			
	2h	22.5			21.9	23.2	25.3	25.7	19.9	22.4			22.1	23.2	22.6	24.6	24.0			
Dynamic ELR	4h	48.0			48.1	47.8	47.8	47.7	45.8	40.1			39.9	40.4	41.0	41.4	43.0			
	6h	47.6			48.1	48.1	47.5	49.1	48.5	40.1			39.9	40.4	41.0	43.1	43.6			
	8h	49.9			49.9	49.7	49.9	50.0	49.7	49.3			49.3	49.3	49.4	50.0	49.6			
Large hydro	Dynamic	49.9								49.4										
Laige liyulu	Shape	49.1								48.2										

2022 LOE Capacity Value Results (MW) 100-MW incremental unit

16

		ELCC									MRI									
Class	Subtype	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K			
Thermal	5% EFOR	96.4			96.3	95.2	95.4	95.7	92.3	93.4			93.9	93.0	93.2	93.5	93.3			
Hiemai	10% EFOR	96.1			96.9	95.7	96.8	93.0	91.6	88.8			88.8	89.0	88.8	89.1	90.3			
Biomass	Zone	72.9	59.0	59.8	62.8					71.1	58.2	58.8	60.5							
Diomago	Average	67.1	67.1	66.9	67.2					67.3	67.3	68.8	67.4							
Run of river	Zone	22.7	20.7	39.9	43.6	59.5				21.0	22.6	37.5	43.0	59.5						
ran or nvor	Average	32.8	32.7	32.6	32.6	32.6				30.6	30.6	31.0	30.3	31.5						
Onshore wind	Zone	6.5	9.0	8.7						7.3	10.1	9.8								
Offshore wind	Average	6.3	6.4	6.3						9.0	9.0	8.5								
Offshore wind	Zone							22.7	22.3							25.2	25.9			
Solar	Zone	43.8			37.2	32.2	28.4	20.0	21.0	39.0			31.2	25.4	25.7	27.9	25.2			
Coldi	Average	35.0			34.9	35.5	36.0	35.7	31.5	29.8			29.5	29.3	30.7	33.5	30.2			
	2h	49.0			46.9	49.3	49.8	52.4	39.5	43.4			42.9	44.2	44.2	45.5	45.1			
Shape ELR	4h	86.7			83.5	84.9	85.8	81.7	82.5	80.0			79.9	80.0	80.7	79.3	84.5			
Chapo LLIX	6h	90.4			89.8	90.3	89.8	89.8	90.8	82.3			82.2	82.9	83.5	84.3	88.0			
	8h	98.1			97.5	97.4	97.2	97.9	98.7	98.2			98.1	98.1	98.1	97.7	99.1			
	2h	48.8			46.3	50.1	51.5	53.1	39.9	44.7			44.3	45.5	45.4	46.5	45.5			
Dynamic ELR	4h	89.9			89.3	89.9	89.6	83.4	83.9	81.8			81.7	81.9	82.4	80.8	85.4			
Dynamic ELK	6h	89.8			89.5	89.7	90.9	91.0	92.4	83.6			83.5	84.3	84.7	85.3	88.5			
	8h	99.0			99.1	98.7	99.1	98.9	99.4	99.9			99.9	99.9	99.8	99.1	100.0			
Large hydro	Dynamic	99.2								100.0										
Laig e flydio	Shape	99.2								96.6										

2022 RNA 2030 Base Case Results

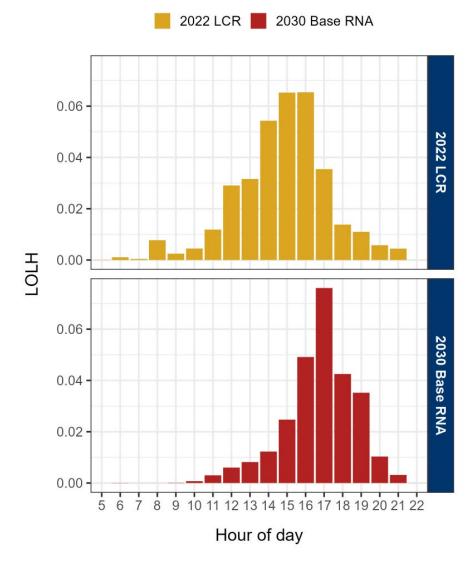
Second sensitivity: Reliability Needs Assessment (RNA) database (I)

The second sensitivity uses the 2022 1st pass Base Case Study for study year 2030, recently assembled by the NYISO RNA team

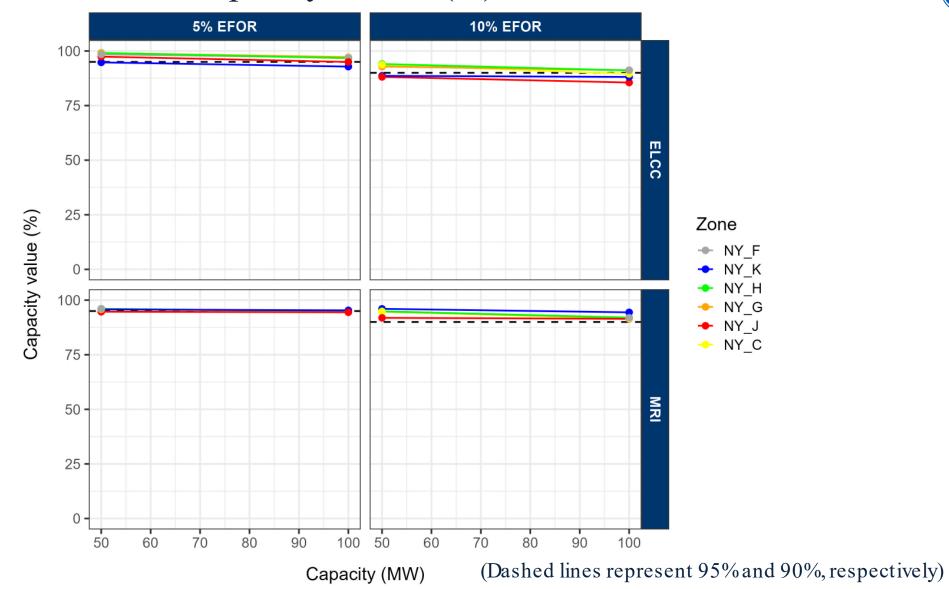
GE used the LCR Optimizer to bring the RNABase Case for year 2030 to the at criteria LOLE of 0.1

The IRM and LCRs selected as the least-cost requirements by the LCR Optimizer are shown on the right for year 2030 of the RNA Base Case and compared to the current IRM and LCRs

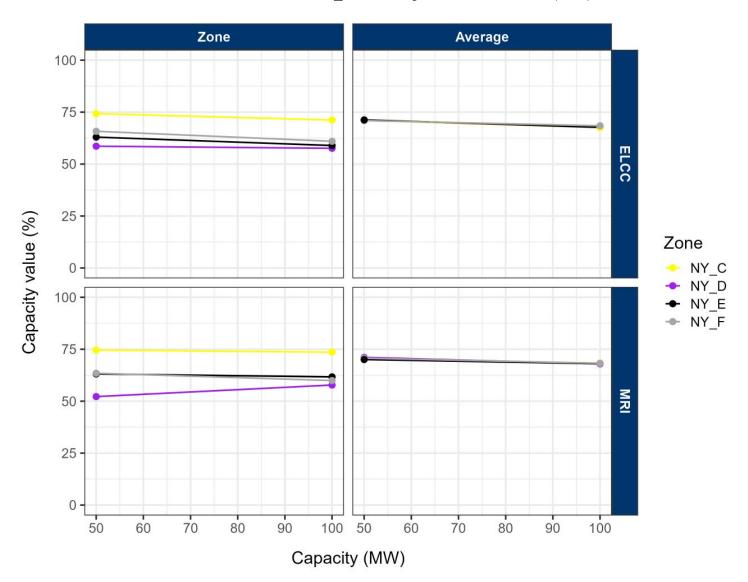
	Current	RNA Base Case 2030
NYCAIRM	119.6%	126.2%
G-J LCR	89.2%	84.2%
J LCR	81.2%	98.1%
KLCR	99.5%	114.5%


Second sensitivity: Reliability Needs Assessment (RNA) database (II)

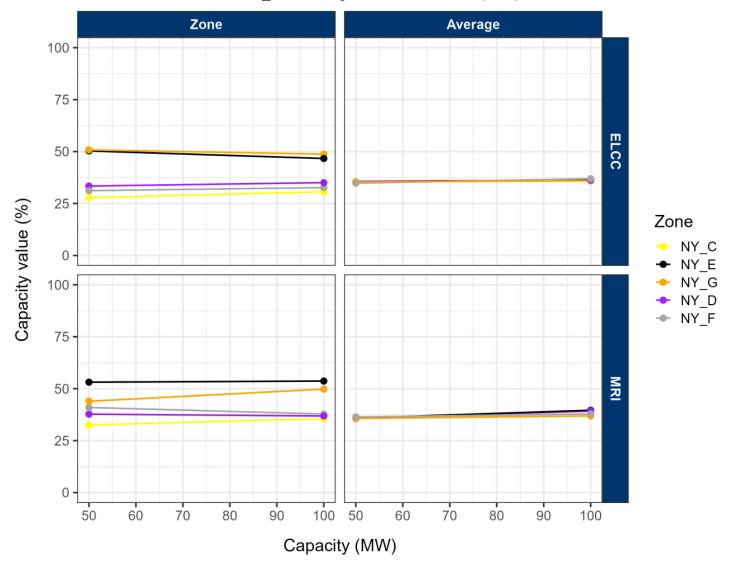
The hourly LOLE distribution shifts to later in the day for study year 2030 of the 2022 1st pass Base Case Study in comparison to the hourly LOLE distribution from the 2022 NYISO LCR database, as shown in the table and figures


• Highlighted in yellow below are the four hours with the highest percentage of total hourly LOLE in each case

НВ	2022 LCR	RNA Base Case Year 2030
10	1.3%	0.3%
11	3.4%	1.1%
12	8.4%	2.2%
13	9.2%	3.0%
14	15.8%	4.5%
15	19.0%	9.1%
16	19.0%	18.1%
17	10.3%	28.0%
18	4.0%	15.7%
19	3.2%	13.0%
20	1.7%	3.8%
21	1.3%	1.2%


Thermal - ELCC and MRI capacity values (%)

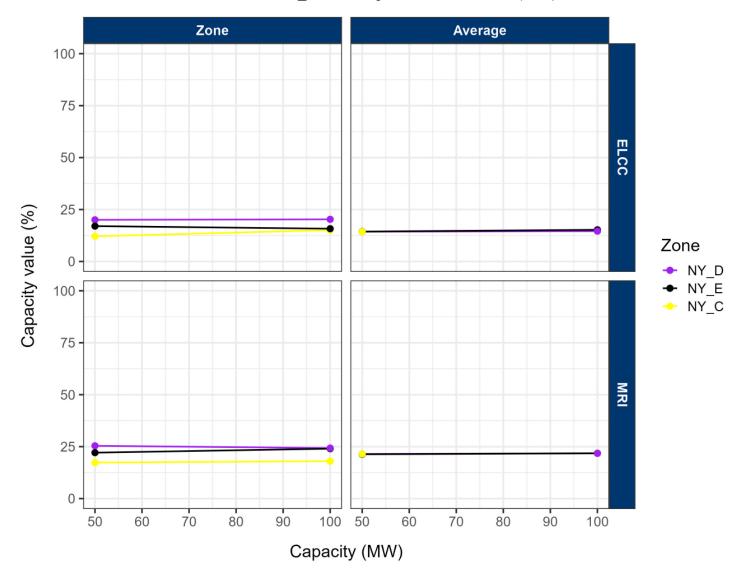
Landfill biomass - ELCC and MRI capacity values (%)



Zone = each zone uses a different shape

Average = all zones use the same shape

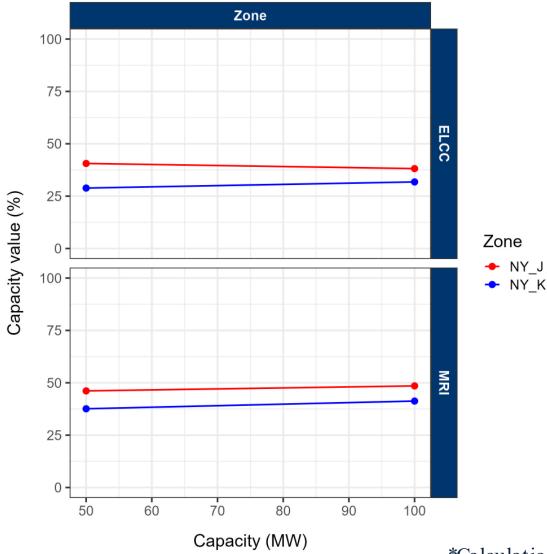
Run-of-river - ELCC and MRI capacity values (%)



Zone = each zone uses a different shape

Average = all zones use the same shape

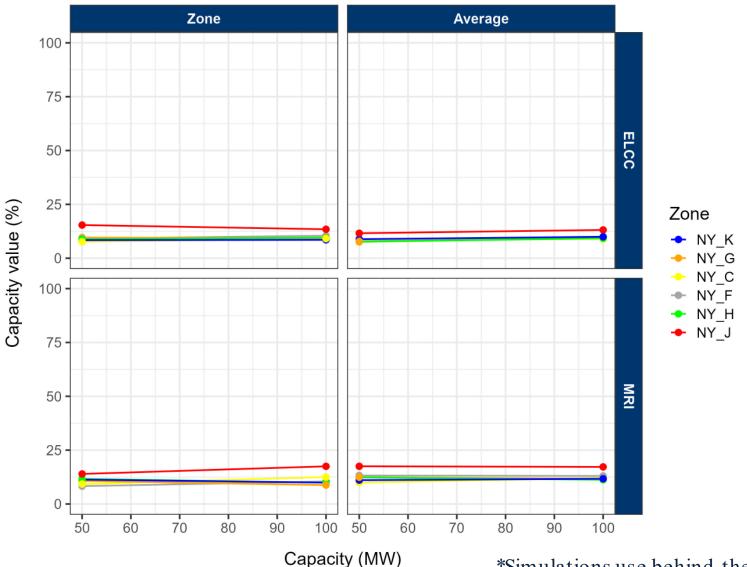
Onshore wind - ELCC and MRI capacity values (%)


Zone = each zone uses a different shape

Average = all zones use the same shape

- LOE and RNA Base Case results

Offshore wind - ELCC and MRI capacity values (%)

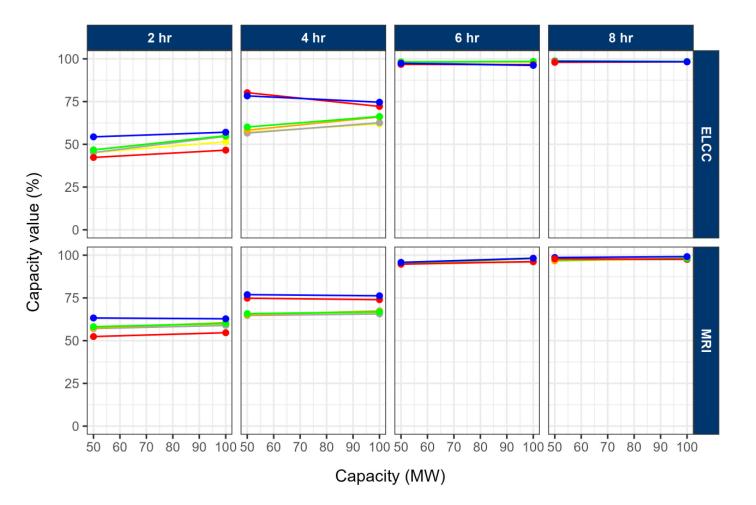


*Calculations use simulated data

Solar – ELCC and MRI capacity values (%)

Zone = each zone uses a different shape

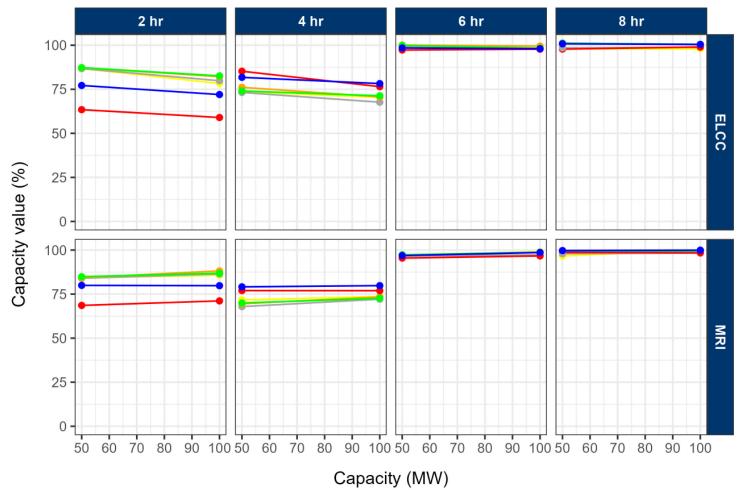
Average = all zones use the same shape


*Simulations use behind-the-meter shapes

25

Energy Duration Limited – Shape-based model ELCC and MRI capacity values (%)

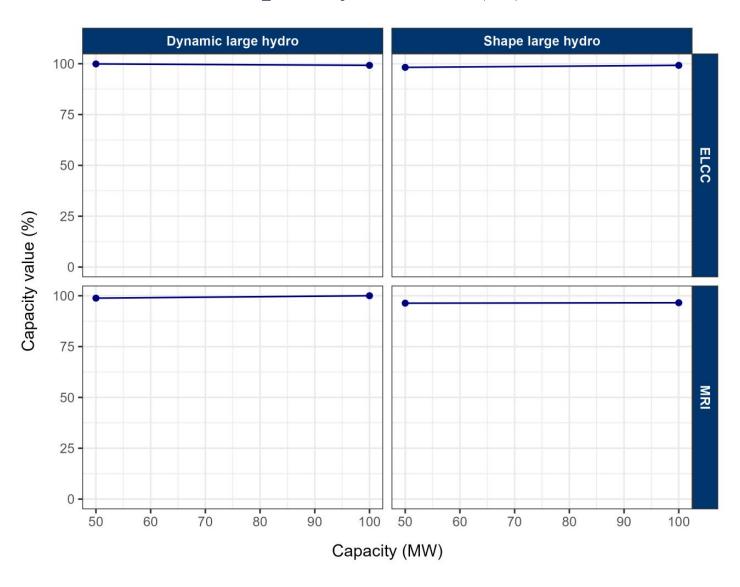
Shape = fixed shape dispatch


Dynamic = MARS dispatch algorithm

Dispatch shifted back 1 hour to match events hours

Energy Duration Limited – Dynamic model ELCC and MRI capacity values (%)

Zone NY_C NY_H NY_F
NY_G NY_J NY_K


Shape = fixed shape dispatch

Dynamic = MARS dispatch algorithm

Dispatch shifted back 1 hour to match events hours

Large Hydro - ELCC and MRI capacity values (%)

Shape = fixed shape dispatch

Dynamic = MARS dispatch algorithm

2023 RNA 2030 Base Case Capacity Value Results (MW) 50-MW incremental unit

		ELCC									MRI									
Class	Subtype	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K			
Thermal	5% EFOR	49.2			49.2	49.5	49.6	48.7	47.4	47.9			48.0	48.0	48.0	47.4	47.9			
THEIIIIai	10% EFOR	46.8			46.5	46.4	47.0	44.1	44.3	47.3			47.4	47.4	47.4	45.9	48.0			
Biomass	Zone	37.1	29.3	31.5	32.9					37.3	26.1	31.6	31.7							
Diomago	Average	35.5	35.6	35.6	35.5					35.2	35.5	35.0	35.3							
Run of river	Zone	13.9	16.7	25.2	15.6	25.4				16.3	18.9	26.6	20.5	22.0						
	Average	17.8	17.8	17.6	17.4	17.7				17.9	17.9	17.9	18.2	17.8						
Onshore wind	Zone	6.1	10.0	8.5						8.7	12.7	11.1								
Onsilore wind	Average	7.2	7.2	7.2						10.7	10.7	10.7								
Offshore wind	Zone							20.3	14.4							23.1	18.8			
Solar	Zone	3.8			4.6	4.8	4.4	7.7	4.2	4.6			4.1	5.4	5.8	7.0	5.7			
Oolai	Average	4.2			3.9	3.8	3.8	5.8	4.4	5.0			6.6	6.2	6.2	8.8	5.5			
	2h	22.6			22.6	23.4	23.4	21.2	27.2	28.6			28.5	28.7	29.1	26.2	31.6			
Shape ELR	4h	28.6			28.3	29.1	30.1	40.1	39.2	32.5			32.4	32.5	32.9	37.4	38.5			
Onapo EEI (6h	49.1			49.0	49.1	49.1	48.4	48.7	47.8			47.6	47.4	47.7	47.4	47.9			
	8h	49.3			49.4	49.2	49.4	49.0	49.3	48.5			48.6	48.4	48.6	49.0	49.3			
	2h	43.4			43.4	43.6	43.6	31.7	38.6	42.1			42.0	42.2	42.4	34.3	40.0			
Dynamic ELR	4h	36.9			36.6	38.1	37.0	42.6	40.9	35.9			33.9	34.8	35.0	38.5	39.6			
Dynamic LLIC	6h	49.4			49.5	50.0	49.9	48.6	49.2	48.6			48.3	48.4	48.7	47.7	48.4			
	8h	49.0			49.3	50.0	50.0	48.9	50.0	48.3			49.0	49.7	49.6	49.3	49.9			
Large hydro	Dynamic	50.0								48.0										
Large riyaro	Shape	48.8								47.5										

2023 RNA 2030 Base Case Capacity Value Results (MW) 100-MW incremental unit

		ELCC									MRI									
Class	Subtype	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K	NY_C	NY_D	NY_E	NY_F	NY_G	NY_H	NY_J	NY_K			
Thermal	5% EFOR	97.2			97.0	97.2	96.7	95.0	92.8	94.8			94.8	94.8	94.9	94.4	95.3			
memai	10% EFOR	89.5			91.2	91.2	91.1	85.5	88.1	91.6			91.9	91.8	92.0	91.4	94.4			
Biomass	Zone	71.2	57.6	58.9	61.0					73.6	57.8	61.7	59.9							
Biomago	Average	67.6	67.6	67.7	68.4					68.3	68.0	68.0	68.2							
Run of river	Zone	30.6	35.1	46.7	32.7	48.7				35.6	36.9	53.7	37.8	49.8						
	Average	36.3	36.3	36.5	36.9	35.9				39.2	39.2	39.6	37.8	36.9						
Onshore wind	Zone	15.1	20.3	15.8						18.0	24.3	24.0								
Charlote willu	Average	14.6	14.6	15.2						21.8	21.8	21.8								
Offshore wind	Zone							38.1	31.8							48.5	41.3			
Solar	Zone	9.1			10.5	9.3	9.6	13.4	8.5	12.5			10.5	8.8	9.9	17.5	9.9			
Colai	Average	9.0			9.5	9.5	9.3	13.1	10.0	12.1			13.0	11.7	11.3	17.2	11.7			
	2h	51.5			54.7	54.9	55.0	46.6	57.1	59.5			58.9	60.6	60.1	54.6	62.8			
Shape ELR	4h	61.9			62.6	66.0	66.3	72.2	74.6	66.0			65.6	67.4	66.8	74.0	76.2			
Chapo EER	6h	98.2			96.3	98.3	98.5	96.6	96.2	97.9			96.0	98.1	98.1	96.3	98.2			
	8h	98.4			98.5	98.5	98.4	98.3	98.3	97.6			97.5	98.1	98.1	97.6	99.2			
	2h	78.3			79.9	82.2	82.6	59.0	72.0	85.7			86.4	88.2	86.9	71.1	79.8			
Dynamic ELR	4h	70.4			67.7	70.7	71.3	76.5	78.2	73.7			72.1	73.4	72.6	76.9	79.8			
Syriainio EEI	6h	98.0			98.1	99.5	98.3	97.8	98.0	99.0			97.3	98.8	98.7	96.7	98.6			
	8h	97.9			98.9	100.0	100.0	99.0	100.0	99.9			98.3	99.8	99.5	98.4	99.9			
Large hydro	Dynamic	100.0								99.4										
Laige flyulo	Shape	96.4								98.2										

9/30/2022

Confidential. Not to be copied, reproduced, or distributed without prior approval.

CAUTION CONCERNING FORWARDLOOKING STATEMENTS:

This document contains "forward-looking statements"—that is, statements related to future events that bytheir nature address matters that are, to different degrees, uncertain. For details on the uncertainties that may cause our actual future results to be materially different than those expressed in our forward-looking statements, see http://www.ge.com/investor-relations/disclaimer-caution-concerning-forwardlooking-statements as well as our annual reports on Form 10-Kand quarterly reports on Form 10-Q. We do not undertake to update our forward-looking statements. This document also includes certain forward-looking projected financial information that is based on current estimates and forecasts. Actual results could differ materially. to total risk-weighted assets.]

NON-GAAP FINANCIAL MEASURES:

In this document, we sometimes use information derived from consolidated financial data but not presented in our financial statements prepared in accordance with U.S. generally accepted accounting principles (GAAP). Certain of these data are considered "non-GAAP financial measures" under the U.S. Securities and Exchange Commission rules. These non-GAAP financial measures supplement our GAAP disclosures and should not be considered an alternative to the GAAP measure. The reasons we use these non-GAAP financial measures and the reconciliations to their most directly comparable GAAP financial measures are posted to the investor relations section of our website at www.ge.com. [We use non-GAAP financial measures including the following:

- Operating earnings and EPS, which is earnings from continuing operations excluding non-service-related pension costs of our principal pension plans.
- GE Industrial operating & Vertical earnings and EPS, which is operating earnings of our industrial businesses and the GECapital businesses that we expect to retain.
- GE Industrial & Verticals revenues, which is revenue of our industrial businesses and the GE Capital businesses that we expect to retain.
- Industrial segment organic revenue, which is the sum of revenue from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.
- Industrial segment organic operating profit, which is the sum of segment profit from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.
- Industrial cash flows from operating activities (Industrial CFOA), which is GE's cash flow from operating activities excluding dividends received from GE Capital.
- Capital ending net investment (ENI), excluding liquidity, which is a measure we use to measure the size of our Capital segment.
- GE Capital Tier 1 Common ratio estimate is a ratio of equity